微分中值定理及导数的应用复习
1.知识范围
(1)微分中值定理
罗尔(Rolle)定理 拉格朗日(Lagrange)中值定理
(2)洛必达(L‘Hospital)法则
(3)函数增减性的判定法
(4)函数的极值与极值点最大值与最小值
(5)曲线的凹凸性、拐点
(6)曲线的水平渐近线与铅直渐近线
2.要求
(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义。会用罗尔定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。
(2)熟练掌握用洛必达法则求各种型未定式的极限的方法。
(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式。
(4)理解函数极值的概念。掌握求函数的极值、最大值与最小值的方法,会解简单的应用问题。
(5)会判断曲线的凹凸性,会求曲线的拐点。
(6)会求曲线的水平渐近线与铅直渐近线。
(7)会作出简单函数的图形。
声明:
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。
关注公众号
回复“免费资料”领取复习资料
微信公众号
微信交流群
<<点击收起