以下内容由山东成考网整理发布,更多山东成考报名、时间安排、开考院校、开考专业、成绩查询、学籍查询,山东成考问题解答等山东成考综合信息可关注山东成考网与众多考生一起交流心得体会,及时上岸!
2022年成人高考数学(理)复习难点(函数部分)
求解函数解析式
求解函数解析式是高考重点考查内容之一,需引起重视。本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。
难点磁场
已知f(2-cosx)=cos2x+cosx,求f(x-1)。
案例探究
[例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。
(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求?f(x)的表达式。
函数值域及求法
函数的值域及其求法是近几年高考考查的重点内容之一。本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题。
难点磁场
设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m)。
(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M。
(2)当m∈M时,求函数f(x)的最小值。
(3)求证:对每个m∈M,函数f(x)的最小值都不小于1。
声明:
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。
关注公众号
回复“免费资料”领取复习资料
微信公众号
微信交流群
<<点击收起