了解成考了解成考 报名流程报名流程 加分政策加分政策 真题汇总 10年-23年真题 成考办电话成考办电话

咨询热线

13176677032 (点击在线咨询)
首页 > 成考资料 >
自考攻略

2022年山东成考高起点数学(理)复习资料-函数部分

时间:2022-04-08 16:52:40 作者:储老师

z成考助学

  以下内容由山东成考网整理发布,更多山东成考报名、时间安排、开考院校、开考专业、成绩查询、学籍查询,山东成考问题解答等山东成考综合信息可关注山东成考网与众多考生一起交流心得体会,及时上岸!

    2022年成人高考数学(理)复习难点(函数部分)


      求解函数解析式


      求解函数解析式是高考重点考查内容之一,需引起重视。本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。


  难点磁场


  已知f(2-cosx)=cos2x+cosx,求f(x-1)。


  案例探究


  [例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。


  (2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求?f(x)的表达式。


  函数值域及求法


  函数的值域及其求法是近几年高考考查的重点内容之一。本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题。


    难点磁场


  设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m)。


  (1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M。


  (2)当m∈M时,求函数f(x)的最小值。


  (3)求证:对每个m∈M,函数f(x)的最小值都不小于1。

声明:

(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。

(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。

考试提醒

成绩查询:11月25日

微信公众号

考生交流群

微信公众号 扫一扫关注微信公众号 与考生自由互动、并且能直接与专业老师进行交流、解答。
微信交流群 扫一扫加入微信交流群 与考生自由互动、并且能直接与专业老师进行交流、解答。

关注公众号

回复“免费资料”领取复习资料

微信公众号

微信公众号

微信公众号

微信交流群

<<点击收起

在线咨询

在线咨询

APP下载

APP
下载

联系微信
联系
微信
扫描二维码
扫描
二维码
反馈建议
反馈
建议
回到顶部
回到
顶部
APP下载
微信客服
微信交流群