难点10 函数图象与图象变换 函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质. ●难点磁场 ()已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围. ●案例探究 [例1]对函数y=f(x)定义域中任一个x的值均有f(x+a)=f(a-x),(1)求证y=f(x)的图象关于直线x=a对称;(2)若函数f(x)对一切实数x都有f(x+2)=f(2-x),且方程f(x)=0恰好有四个不同实根,求这些实根之和. 命题意图:本题考查函数概念、图象对称问题以及求根问题.属级题目. 知识依托:把证明图象对称问题转化到点的对称问题. 错解分析:找不到问题的突破口,对条件不能进行等价转化. 技巧与方法:数形结合、等价转化. (1)证明:设(x0,y0)是函数y=f(x)图象上任一点,则y0=f(x0),又f(a+x)=f(a-x),∴f(2a-x0)= f[a+(a-x0)]=f[a-(a-x0)]=f(x0)=y0,∴(2a-x0,y0)也在函数的图象上,而 =a,∴点(x0,y0)与(2a-x0,y0)关于直线x=a对称,故y=f(x)的图象关于直线x=a对称. (2)解:由f(2+x)=f(2-x)得y=f(x)的图象关于直线x=2对称,若x0是f(x)=0的根,则4-x0也是f(x)=0的根,由对称性,f(x)=0的四根之和为8. [例2]如图,点A、B、C都在函数y= 的图象上,它们的横坐标分别是a、a+1、a+2.又A、B、C在x轴上的射影分别是A′、B′、C′,记△AB′C的面积为f(a),△A′BC′的面积为g(a). (1)求函数f(a)和g(a)的表达式; (2)比较f(a)与g(a)的大小,并证明你的结论. 命题意图:本题考查函数的解析式、函数图象、识图能力、图形的组合等.属级题目. 知识依托:充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口. 错解分析:图形面积不会拆拼. 技巧与方法:数形结合、等价转化. 解:(1)连结AA′、BB′、CC′,则f(a)=S△AB′C=S梯形AA′C′C-S△AA′B′-S△CC′B = (A′A+C′C)= ( ), g(a)=S△A′BC′= A′C′・B′B=B′B= . ∴f(a) ●锦囊妙计 1.熟记基本函数的大致图象,掌握函数作图的基本方法:(1)描点法:列表、描点、连线;(2)图象变换法:平移变换、对称变换、伸缩变换等. 2.高考中总是以几类基本初等函数的图象为基础来考查函数图象的.题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视.
声明:
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。
关注公众号
回复“免费资料”领取复习资料
微信公众号
微信交流群
<<点击收起