2021年山东成人高考专升本高数(一)考前复习资料(4)
极限
1.知识范围
(1)数列极限的概念
数列 数列极限的定义
(2)数列极限的性质
唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理
(3)函数极限的概念
函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义
(4)函数极限的性质
唯一性 四则运算法则 夹通定理
(5)无穷小量与无穷大量
无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶
(6)两个重要极限
2.要求
(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(三)连续
1.知识范围
(1)函数连续的概念
函数在一点处连续的定义 左连续与右连续 函数在一点处连续的充分必要条件 函数的间断点及其分类
(2)函数在一点处连续的性质
连续函数的四则运算 复合函数的连续性 反函数的连续性
(3)闭区间上连续函数的性质
有界性定理 最大值与最小值定理 介值定理(包括零点定理)
(4)初等函数的连续性
2.要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
声明:
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。
关注公众号
回复“免费资料”领取复习资料
微信公众号
微信交流群
<<点击收起